Loading...
Custom Services order now ship next day

ATP6V1G1

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A, three B, and two G subunits, as well as a C, D, E, F, and H subunit. The V1 domain contains the ATP catalytic site. The protein encoded by this gene is one of three V1 domain G subunit proteins. Pseudogenes of this gene have been characterized.
Protein class

Metabolic proteins, Plasma proteins, Transporters

Predicted location

Intracellular

Single cell type specificity

Low cell type specificity

Immune cell specificity

Low immune cell specificity

Cell line specificity

Low cell line specificity

Interaction

V-ATPase is a heteromultimeric enzyme made up of two complexes: the ATP-hydrolytic V1 complex and the proton translocation V0 complex (PubMed:33065002). The V1 complex consists of three catalytic AB heterodimers that form a heterohexamer, three peripheral stalks each consisting of EG heterodimers, one central rotor including subunits D and F, and the regulatory subunits C and H (PubMed:33065002). The proton translocation complex V0 consists of the proton transport subunit a, a ring of proteolipid subunits c9c'', rotary subunit d, subunits e and f, and the accessory subunits ATP6AP1/Ac45 and ATP6AP2/PRR (PubMed:33065002).

More Types Infomation

Our customer service representatives are available 24 hours a day, from Monday to Sunday. Contact Us

Can't find the products you're looking for? Try to filter in the left sidebar.Filter By Tag

For Research Use Only. Not For Clinical Use.

© 2024 Creative Biolabs.
  • 0
  • 0
Cart

    Go to compare