Loading...
Custom Services order now ship next day

IDH1

Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which utilizes NAD(+) as the electron acceptor and the other NADP(+). Five isocitrate dehydrogenases have been reported: three NAD(+)-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP(+)-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP(+)-dependent isozyme is a homodimer. The protein encoded by this gene is the NADP(+)-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. It contains the PTS-1 peroxisomal targeting signal sequence. The presence of this enzyme in peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2, 4-dienoyl-CoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production. Alternatively spliced transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Sep 2013]
Protein class

Cancer-related genes, Citric acid cycle related proteins, Disease related genes, Enzymes, FDA approved drug targets, Human disease related genes, Metabolic proteins, Plasma proteins

Predicted location

Intracellular

Single cell type specificity

Cell type enhanced (Hepatocytes, Cytotrophoblasts, Granulosa cells)

Immune cell specificity

Low immune cell specificity

Cell line specificity

Cell line enhanced (Hep G2, RT4)

Interaction

Homodimer.

Molecular function

Oxidoreductase

More Types Infomation

Our customer service representatives are available 24 hours a day, from Monday to Sunday. Contact Us

Can't find the products you're looking for? Try to filter in the left sidebar.Filter By Tag

For Research Use Only. Not For Clinical Use.

© 2024 Creative Biolabs.
  • 0
  • 0
Cart

    Go to compare