Loading...
Custom Services order now ship next day

TDH (Thermostable direct hemolysin)

Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, is detoxified by heating at approximately 60-70 degrees C but is reactivated by additional heating above 80 degrees C. This paradoxical phenomenon, known as the Arrhenius effect, has remained unexplained for approximately 100 years. Scientists now demonstrate that the effect is related to structural changes in the protein that produce fibrils. The native TDH (TDHn) is transformed into nontoxic fibrils rich in beta-strands by incubation at 60 degrees C (TDHi). The TDHi fibrils are dissociated into unfolded states by further heating above 80 degrees C (TDHu). Rapid cooling of TDHu results in refolding of the protein into toxic TDHn, whereas the protein is trapped in the TDHi structure by slow cooling of TDHu. Transmission electron microscopy indicates the fibrillar structures of TDHi. The fibrils show both the property of the nucleation-dependent elongation and the increase in its thioflavin T fluorescence. Formation of beta-rich structures of TDH was also observed in the presence of lipid vesicles containing ganglioside G(T1b), a putative TDH receptor. Congo red was found to inhibit the hemolytic activity of TDH in a dose-dependent manner. These data reveal that the mechanism of the Arrhenius effect which is tightly related to the fibrillogenicity of TDH.
TDH (Thermostable direct hemolysin)

Our customer service representatives are available 24 hours a day, from Monday to Sunday. Contact Us

Can't find the products you're looking for? Try to filter in the left sidebar.Filter By Tag

For Research Use Only. Not For Clinical Use.

© 2024 Creative Biolabs.
  • 0
  • 0
Cart

    Go to compare