+ Filter
Loading...
Custom Services order now ship next day

TCIRG1

Loading...

Anti-TCIRG1 Products

View More Products

Can't find the products you're looking for? Try to filter in the left sidebar.Filter By Tag

More Infomation

Our customer service representatives are available 24 hours a day, from Monday to Sunday. Contact Us

For Research Use Only. Not For Clinical Use.


Background

This gene encodes a subunit of a large protein complex known as a vacuolar H+-ATPase (V-ATPase). The protein complex acts as a pump to move protons across the membrane. This movement of protons helps regulate the pH of cells and their surrounding environment. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, and receptor-mediated endocytosis. V-ATPase is comprised of a cytosolic V1 domain and a transmembrane V0 domain. Alternative splicing results in multiple transcript variants. Mutations in this gene are associated with infantile malignant osteopetrosis. [provided by RefSeq, May 2017]
Protein class

Disease related genes, Human disease related genes, Metabolic proteins

Predicted location

Intracellular, Membrane (different isoforms)

Single cell type specificity

Cell type enhanced (Gastric mucus-secreting cells, Macrophages, Kupffer cells)

Immune cell specificity

Low immune cell specificity

Cell line specificity

Cell line enhanced (HMC-1, RPMI-8226)

Interaction

V-ATPase is a heteromultimeric enzyme made up of two complexes: the ATP-hydrolytic V1 complex and the proton translocation V0 complex (By similarity). The V1 complex consists of three catalytic AB heterodimers that form a heterohexamer, three peripheral stalks each consisting of EG heterodimers, one central rotor including subunits D and F, and the regulatory subunits C and H (By similarity). The proton translocation complex V0 consists of the proton transport subunit a, a ring of proteolipid subunits c9c'', rotary subunit d, subunits e and f, and the accessory subunits ATP6AP1/Ac45 and ATP6AP2/PRR (By similarity).

More Types Infomation
Go to compare

Go to compare