-
Supports
- FAQs
- Resources
- Engineered Antibody Overview
- Therapeutic Antibody Overview
- Why Recombinant Monoclonal Antibodies?
- Biosimilars of Monoclonal Antibodies
- Vβ 8 & M2 BsAb Overview
- Ascrinvacumab Overview
- Priliximab Overview
- Arcitumomab Overview
- Altumomab Overview
- Sulesomab Overview
- Besilesomab Overview
- Sevirumab Overview
- Lacnotuzumab Overview
- Urtoxazumab Overview
- Briakinumab Overview
- Certolizumab Pegol Overview
- Efalizumab Overview
- Obiltoxaximab Overview
- Odulimomab Overview
- Ralpancizumab Overview
- Sofituzumab Vedotin Overview
- Tezepelumab Overview
- Refanezumab Overview
- Abciximab Overview
- Rovelizumab Overview
- Vatelizumab Overview
- Edobacomab Overview
- Efungumab Overview
- Nebacumab Overview
- Parsatuzumab Overview
- Bapineuzumab Overview
- Capromab Pendetide Overview
- Dinutuximab Overview
- Duligotuzumab Overview
- Elgemtumab Overview
- Polatuzumab Vedotin Overview
- Ponezumab Overview
- Vorsetuzumab Mafodotin Overview
- Vorsetuzumab Overview
- Olendalizumab Overview
- Afelimomab Overview
- Anatumomab Mafenatox Overview
- Blosozumab Overview
- Brentuximab Vedotin Overview
- Carotuximab Overview
- Denosumab Overview
- Enavatuzumab Overview
- Icrucumab Overview
- Indatuximab Ravtansine Overview
- Infliximab Overview
- Iratumumab Overview
- Lerdelimumab Overview
- Roledumab Overview
- Satumomab Overview
- Satumomab Pendetide Overview
- Siplizumab Overview
- Lifastuzumab Vedotin Overview
- Minretumomab Overview
- Motavizumab Overview
- Naptumomab Estafenatox Overview
- Ozanezumab Overview
- Palivizumab Overview
- Tefibazumab Overview
- Tenatumomab Overview
- Afasevikumab Overview
- Andecaliximab Overview
- Anrukinzumab Overview
- Apolizumab Overview
- Bertilimumab Overview
- Cantuzumab Mertansine Overview
- Clenoliximab Overview
- Codrituzumab Overview
- Dezamizumab Overview
- Ecromeximab Overview
- Eldelumab Overview
- Enoblituzumab Overview
- Enokizumab Overview
- Ensituximab Overview
- Fezakinumab Overview
- Inolimomab Overview
- Keliximab Overview
- Lorvotuzumab Mertansine Overview
- Ontuxizumab Overview
- Otlertuzumab Overview
- Panobacumab Overview
- Pascolizumab Overview
- Pemtumomab Overview
- Plozalizumab Overview
- Prezalumab Overview
- Ramucirumab Overview
- Samalizumab Overview
- Yttrium (90 Y) Clivatuzumab Tetraxetan Overview
- Disease Overview
- Protocol & Troubleshooting
- Immunoblotting Protocol & Troubleshooting
- 3D Immunohistochemistry Protocol & Troubleshooting
- Electron Microscopy Protocol & Troubleshooting
- Enzyme-linked Immunosorbent Spot Protocol & Troubleshooting
- Enzyme-linked Immunosorbent Assay Protocol & Troubleshooting
- Flow Cytometry Protocol & Troubleshooting
- Functional Assay Protocol & Troubleshooting
- Gel Super Shift Assay Protocol & Troubleshooting
- Activation Assay Protocol & Troubleshooting
- Antibody Depletion Assay Protocol & Troubleshooting
- Apoptosis Protocol & Troubleshooting
- Bioimaging Protocol & Troubleshooting
- Blocking Protocol & Troubleshooting
- Cell Screening Protocol & Troubleshooting
- Cell Separation Protocol & Troubleshooting
- Chromatin Immunoprecipitation Protocol & Troubleshooting
- Complement Mediated Cell Depletion Protocol & Troubleshooting
- Costimulation Protocol & Troubleshooting
- Hemagglutination Protocol & Troubleshooting
- Immunohistology-Resin Section Protocol & Troubleshooting
- Immunoprecipitation Protocol & Troubleshooting
- Immunoradiometric Assay Protocol & Troubleshooting
- In Situ Hybridization Protocol & Troubleshooting
- Intracellular Staining for Flow Cytometry Protocol & Troubleshooting
- Cytotoxicity Assay Protocol & Troubleshooting
- Dot Blot Protocol & Troubleshooting
- Mass Cytometry Protocol & Troubleshooting
- Knockout/Knockdown Target Confirmation by Western Blot Protocol & Troubleshooting
- Methylated DNA Immunoprecipitation Protocol & Troubleshooting
- Radial Immunodiffusion Protocol & Troubleshooting
- Radioimmunoassay Protocol & Troubleshooting
- Surface Plasmon Resonance Protocol & Troubleshooting
- Immunocytochemistry Protocol & Troubleshooting
- Immunodiffusion Protocol & Troubleshooting
- Immunofluorescence Protocol & Troubleshooting
- Immunohistochemistry Protocol & Troubleshooting
- Immunohistochemistry-Frozen Protocol & Troubleshooting
- Immunohistochemistry-Paraffin Protocol & Troubleshooting
- Immunoassay Protocol & Troubleshooting
- Live Cell Imaging Protocol & Troubleshooting
- Multiplex Bead based Assay Protocol & Troubleshooting
- Neutralization Protocol & Troubleshooting
- Protein Purification Protocol & Troubleshooting
- Tissue Culture Protocol & Troubleshooting
- Turbidimetry Protocol & Troubleshooting
- SDS-PAGE
- Western Blot
- Webinars
NLR Signaling Pathway
About NLR Pathway
The NLRs recognize various ligands from microbial pathogens, host cells, and environmental sources. Most NLRs act as a pattern recognition receptors (PRRs) to recognize the above ligands and activate the inflammatory response. However, some NLRs may not act as PRRs, but react to cytokines such as interferon. Activated NLRs has a variety of functions, which can be divided into four categories: inflammasome formation, signal transduction, transcriptional activation and autophagy. NOD2 removes pathogens by recruiting ATG16L1 to the plasma membrane of the bacterial entry site to induce autophagy. After NOD1 and NOD2 respectively recognize γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide (MDP), they activate NF-κB and MAPK signal pathways. NLRP2 and NLRP4 act as negative regulators of NF-κB pathway by modifying TRAF6. CIITA and NLRC5 are trans-activators of the major histocompatibility complex (MHC). NLRs, which form inflammasomes, convert cytokines into active IL-1 β and IL-18 by activating caspase-1. The NLR signaling pathway are responsible for detecting specific pathogen-associated molecules or host-derived damage signals in the cytosol and initiating the innate immune response.
For research use only. Not intended for any clinical use.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.